
IN
1,

NASA Contractor Report 189086

,,/Y-3_

7_7_0

A Geometric Nonlinear Degenerated Shell

Element Using a Mixed Formulation
With Independently Assumed
Strain Fields

Wiley E. Graf

University of Akron

Akron, Ohio

December 1991

Prepared for

Lewis Research Center

Under Grant NAG3-307

National Aeronautics and

Space Administration

(NASA-CR-189086) A GEOMETRIC NONLINEAR

L}EGENERATED SHELL ELEMENT USING A MIXED

FF!RMULATION WITH INr}EPENDENTLY ASSUMED

STP, AI_,i FISLDS Fina] Report; Ph.D. Thesis,

i959 ( Akron Univ. ) 122 p CSCL 20K

N92-25093

Uncl as

G3139 0079760



im

!
D
|

--t

_ EE
l

i
R



ABSTRACT

encies

Element

tional

A mixed formulation is chosen to overcome

of the standard displacement-based shell

development is traced from the incremental

defici-

model.

varia-

principle on through to the final set of equilibrium

equations. Particular attention is paid to developing

specific guidelines for selecting the optimal set of strain

parameters. Included is a discussion of constraint index
L

concepts and their predictive capability related to locking.

Performance characteristics of the elements are assessed in

a wide variety of linear and nonlinear plate/shell.problems.

Despite limiting the study to geometric nonlinear

analysis, a substantial amount of additional insight

concerning the fihite element modelling of thin plate/shell

structures is provided. For example, in nonlinear analysis,

given the same mesh and load step size, mixed elements

converge in fewer iterations than equivalent displacement-

based models. It is also demonstrated that, in mixed formu-

lations, lower order elements are preferred. Additionally,

meshes used

necessarily

Finally, a

with employing elements designed for biaxial

uniaxial bending applications.

to obtain accurate linear solutions do not

converge to the correct nonlinear solution.

new form of locking was identified associated

bending in
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CHAPTER 1

INTRODUCTION

i.i

in

to

"thick"

smallest

examples

Statement of Problem

A shell may be defined as being a curved structure

three-dimensional space having small thickness relative

its other two dimensions. Further classification as

or "thin" is determined by the ratio of the shell's

radius of curvature to its thickness. Typical

encountered in practice might include: (i) civil

engineering arch and dome structures, (ii) aeronautics, with

its aircraft and space structures, and (iii) sheet metal

forming operations common to many engineering disciplines.

It is the accurate representation of these thin

shell structures using the finite element method that has

long been a concern of researchers. Understandably, in

light of the vast number of real-world structures

classifiable as shell-like, the development of such an

element has received considerable attention.

These shell element formulations may be identified

as falling into one of three distinct categories: (i) flat

element assemblages, (2) intrinsic curved elements derivable

from some specific shell theory, and (3) degenerated models

(and their predecessors, the 3D solids). Each of these

1



approaches has certain advantages and limitations. The

degenerated element has, however, gained the widest

acceptance due largely to its generality which, among other

things, enables it to be more easily extended for nonlinear

analysis.

Despite its appeal, the degenerated element, in its

most fundamental form, is far from trouble-free [32,48]. In

particular, it has been observed to be: (i) susceptible to

locking (both membrane and shear), (ii) sensitive to

distortion, and (iii)lacking insofar as stress calculations

are concerned.

In response to these shortcomings, numerous remedies

have been proposed. Some of the more notable ones include

reduced/selective integration [27,30,31,33,37,40,44,46,47,

48,56,62,66,72], heterosis models [32,34], stabilization

techniques [10,11,13,39], discrete Kirchhoff elements [5,

8,9,22,23,36], and assumed strain methods [6,7,24,29,35,41,

49,55,65] .

There is, however, still no general consensus in

favor of a particular approach due to its inherent

limitations. For instance, reduced/selective in£egration

elements may, under certain loading and/or boundary

conditions, trigger zero-energy deformation modes.

Stabilization techniques involve certain parameters which

still lack appropriate physical interpretations, while

discrete Kirchhoff elements are applicable only in thin

2



plate/shell analysis. Finally, the assumed strain approach,

while very successful in the treatment of transverse shear

for straight-sided elements, does not &ppear to be readily

extendable for the approximation of

higher-order curved elements.

Departing

formulations and

element models,

membrane strains in

from standard displacement-based

their derivatives, various multifield

e.g. hybrid and mixed methods, have also

been introduced [16,19,26,38,44,46,47,50,52,53,57-61,63,64,

67]. Comparatively, these models are much more sound

theoretically. All energy contributions are included, as

exact integration is used throughout. Additionally, this

"gimmick-free" attribute of the multifield models enables

them to be more easily extended for nonlinear analysis.

Factors such as computational cost and need of

guidelines for choosing appropriate strain (or

polynomials have contributed to their general

acceptance in the finite element community.

specific

stress)

lack of

"i.2 Intent of Present Work

The primary objective of this research is to extend

the analysis capabilities of the 5 and 9-node linear mixed

elements developed previously [19,61] to include geometric

nonlinearities (large translations and rotations with small

strains). Much of the theory described herein does in fact

derive from these earlier formulations, e.g. the use of a

modified Hellinger-Reissner principle, imposition of the



Mindlin/Reissner assumption, strain polynomial selection

guidelines with accompanying constraint index arguments and

finally, relaxation of the pointwise equilibrium

requirement. The present development, of course, now takes

into account nonlinear effects in the strain-displacement

relations. Additionally, because of the iterative

incremental step-by-step solution method employed, out-of-

balance load considerations require that right-hand-side

load terms also be included.

Having established the need for continued

into the thin shell finite element analysis area

i.i), a discussion of the various methods

available to improve performance of the standard element

research

taken up in Chapter 2.

of each with regard to

nonlinear analysis, a

chosen.

(Section

presently

is

Assessing the strengths/weaknesses

suitability for extension to

degenerated mixed shell element is

A description of the element is given in Chapter 3.

Much of the discussion mirrors that given in [19] and [61]

related to development of the base linear element.

In an incremental fashion, chapter 4 traces element

development from the modified Hellinger-Reissner variational

principle on through to the final set of equilibrium

equations. Included are discussions addressing such items

as: (i) comparison of stress and strain formulations, (ii)

why an updated, rather than total Lagrangian approach is



preferred,

measures,

mixed formulation

material) analysis.

Chapter 5

appropriate

(iii) energy-conjugate stress and strain

and (iv) why the "strain history" is needed in a

even for a geometric nonlinear (elastic

provides guidelines for

strain polynomial. Again,

selecting the

much of the

discussion here may also be found in earlier papers [19,61].

Implementation of the elemen£ into an existing

finite element code is discussed in Chapter 6. This is

included primarily to facilitate similar future developments

involving new beam, plate or shell elements. It should also

prove to be beneficial if the analysis capabilities of the

existing element are extended at some later date.

Numerical studies designed to assess the behavioral

characteristics of the element in a wide variety of linear

and nonlinear plate/shell applications are presented in

Chapter 7. Results are compared to those reported by other

investigators using various plate/shell models as well as

"exact" solutions, when available.

Chapter 8 begins with a brief summary of the

research effort. Significant findings are also reported,

along with suggestions for future research directions.



CHAPTER 2

REVIEW OF PREVIOUS WORK

As described in the previous chapter, there exist

three distinct categories into which shell element

formulations may fall. The degenerated element approach [I]

does, however, provide a number of advantages and thus, is

generally regarded as being the most attractive.

By applying appropriate constraints on the

displacements (u,v,w) in conjunction with an interpolation

scheme involving midsurface rotations as well as

translations, a middle-surface element may be formulated,

free of many of the shortcomings of previous theories. For

instance, as a result of interpolating rotations separately

from translations,

kinematic variables,

again attractive.

O - -

only C-continuity is required of the

making the lower-order elements once

This approach is also appealing in that

no Consideration is given to any specific shell theory. The

element thus may be used to analyze a wide variety of shell-

type structures. Because transverse shearing deformations

are included, the approach is equally valid for the analysis

of thick shells. Finally, because of the ease in which the

shell geometry and compatibility conditions may be

6



satisfied,

shell problems should be straightforward.

Regardless

reliable element

certain criteria.

requirements [4,21,25,73], the element should be:

extension to include the analysis of nonlinear

of the approach, an efficient and

for plate/shell analysis should satisfy

In addition to convergence and invariant

(i) Relatively simple in its formulation

and application

(ii) Computationally efficient

(iii) Free of any zero-energy deformation

modes

(iv) Free of shear/membrane locking

(v) Relatively insensitive to geometric

distortions

(vi) Accurate insofar as stress predic-

tions are concerned

(vii) Easily extendable for various types

of nonlinear analysis

the

example,

encounter

conditions,

the

In general, it is rather difficult to achieve all of

characteristics listed above. The URI element, for

is certainly simple and efficient, but may

difficulties under certain loading/boundary

or if appreciably distorted. Mixed methods, on

other hand, can generally satisfy items (iii) - (vii)



relative to the URI element, require more effortbut,

computationally and are not as easily formulated.

With this general background in mind, some of the

more successful degenerated plate/shell elements are

reviewed. Discussion will focus on how effectively each of

the formulations meet the above criteria, with particular

attention given to item (vii).

2.1

the

the

plate/shell elements.

elements are, in

Displacement-based Formulations

Assumed displacement models, obtained by

stationarity of the total potential energy,

most frequently

invoking

represent
O

employed apprcach to formulating C

Despite their widespread use, these

certain applications, still quite

inadequate.

have been introduced.

popular methods for

element are described.

In the following,

improving behavior

As a result, numerous alternative formulations

some of the more

of the standard

2.1.1 Reduced/Selective Integration Techniques

In terms of element modification, adoption of a

uniform reduced integration scheme represents the most

direct of all possible approaches. However, while the URI

element may prove to be beneficial for its softening

effects, under certain loading and/or boundary conditions,

zero-energy deformation modes may develop. In this setting,

the analysis becomes numerically unstable. Even more

i

=

m

_=

-_
=

8



dangerous is the formation of a near-mechanism. Here, the

analysis remains stable, but yields a solution grossly in

error.

Pugh et al [56] provides insight as to why these

mechanisms form. A singularity parameter is defined by

comparing

to the

equations.

number of independent relations, thereby

likelihood that a singularity may develop.

increasing

the total number of available degrees of freedom

total number of independent strain component

Inexact integration necessarily reduces the

the

Of the five plate models investigated (4, 8, 9, 12 &

16-node), only the higher-order cubic element was free of

locking when integrated exactly. None were mechanism-free

when a uniform reduced integration rule was employed. Bathe

and Bolourchi [3] in fact recommend the use of exactly

integrated higher-order elements to combat locking since,

in a general large displacement shell analysis, the effects

integration have not as yet been accurately

Their computational cost may, however, be

of reduced

assessed.

excessive.

In

underintegrating

the context of plate analysis, by

shear energy contributions only, the

selective reduced integration elements are less susceptible

to problems of rank deficiency. Applied to thin plates, the

tendency to lock is also avoided. When extended to shells,

however, the SRI element (shear only) was found to be of

9



little help [72]. Here, membrane contributions are of

primary concern and they too must be evaluated with an

integration scheme of reduced order. Though an improvement

over the URI element, the nu_er of zero-energy modes

present in the SRI element (shear and membrane) may still be

at an unacceptable level (see discussion to follow).

2.1.2 Heterosis Models

Focusing their attentions on the 9-node Lagrange

plate element of [56], Hughes and his co-workers [31,32,34]

proposed several schemes to improve its behavior. As had

been previously reported by Pugh, this particular element

locks when integrated exactl Z and introduces four zero-

energy modes at element level if uniform reduced integration

is used.

Initially, a selective reduced integration scheme

was adopted [31]. The resulting element was lock-free and

now contained only one zero-energy mode. Despite arguments

that the remaining mode could usualiy be suppressed

globally, it did still pose a potential danger, particularly

when removed from the more easily understood domain of

linear elastic isotropic analysis with unchanging boundary

conditions. The heterosis element concept [32] eliminates

this remaining mode by using only 8-node serendipity shape

functions to describe transverse displacements, while

retaining rotation effects at the interior node. This is

=

L

I0



accomplished

convergence

to 3).

The

nonlinear

without greatly affecting the element's

characteristics (constraint index drops from 4

above was

case [34].

later extended for the general

Throughout, "exact" integration was

used for membrane contributions and satisfactory results

were still obtained. This occurs only becaus_ each of the

test problems considered were of the shallow shell variety

where little, if any, significant membrane effects are felt.

For deep shell analysis,

membrane terms as well,

additional mechanisms [48].

it is necessary to underintegrate

which then introduces three

Perhaps the most compelling feature of [34] was the

introduction of a lamina system for defining the

constitutive and strain-displacement relations. Since

bending and membrane energies are coupled in a curved shell

analysis, separation of their individual contributions had,

in the past, posed a major problem. With this element-level

reference frame, it is now possible to evaluate shear,

bending and membrane energy contributions individually in a

general nonlinear curved shell analysis, thus making the SRI

elements much more attractive. It should be kept in mind,

however, that even with this type of scheme (reduced

integration on both shear and membrane), the 9-node Lagrange

shell now contains not one (as with the plate element), but

four kinematic modes at element level. Imposing the

Ii



heterosis model assumptions on transverse displacements only

reduces the number of modes to three.

2.1.3 Stabilization Techniques

Potential rank deficiency problems in the URI

element provide the motivation for stabilization techniques.

The stabilizing parameters function to mitigate rank

deficiency, while still retaining the beneficial softening

effects of reduced integration. Being orthogonal to the

rigid body and deformation modes, they are also observed to

have no adverse effect on convergence. Early work [i0]

required the use of a free parameter to regulate the degree

of stabilization. More recent efforts [39] identify these

parameters as being related to generalized stresses/strains.

To date, the nonlinear applications (geometric only) have

not been severe. Extension into other more complex areas,

with appropriate physical interpretation for the stabilizing

parameters, is not clear.

2.1.4 Discrete Kirchhoff Elements

Misrepresentation of shear strain energy in the thin

plate problem provides the motivation for Discrete Kirchhoff

Element formulations. Here, locking is avoided by simply

neglecting energy associated with transverse shear. This,

of course, limits their use to thin plate/shell applications

only, where shear strain energy is indeed negligible.

Crisfield [22] later developed a set of constraint relations

12



associated with the neglecting of transverse shear strain

energy. Again, extension for general nonlinear applications

is not readily apparent.

2.1.5

response to

inability to

contributions.

Assumed Strain Formulations

Assumed strain formulations were introduced in

the standard displacement-based element's

accurately represent certain strain energy

The QUAD4 element [40] employs exact

integration for bending response, but requires an assumed

strain approach in conjunction with an SRI scheme for

transverse and membrane shear. A free parameter related to

the element's aspect ratio, and definition of a "residual

bending

The

in the

elements,

membrane

the more recent formulations [7,55,65] have had success

simpler nonlinear applications.

flexibility" parameter are also required.

assumed strain elements, while very successful

treatment of transverse shear for straight-sided

experience difficulties when approximating

strains in higher-order curved elements. Some of

in

2.1.6 Other Displacement-based Procedures

Of course, there have been many other approaches

adopted in an attempt to improve upon those areas in which

the standard displacement-based element has been observed to

be deficient. The preceding sub-sections concentrated on

only some of the more popular methods. Other procedures of

13



note include anisoparametric interpolation [68,69], physical

lumping processes [2],

incompatible elements [71]

formulations [15].

mode decomposition [12,14],

and free-form finite element

2.2 Multifield Methods

As an alternative to the displacement method,

various multifield approximations, e.g. hybrid, mixed and

quasi-conforming models [67,70] may also be used for

development of effective plate/shell elements. In the

hybrid and mixed methods, for example, one has the freedom

to approximate more than one field, e.g. displacements and

stress (or strain), within an element.

to have greater potential,

constrained media problems.

Application's of the

particularly for use

hybrid and mixed methods

These methods appear

in

to

plate and shell analysis have had only limited success, for

several reasons. First, relatively few studies have been

undertaken, compared to the displacement-based models.

Secondly, many of these previous investigations have failed

to obtain reliable lower-order elements. Attentions were

thus turned to the higher-order elements, for which the

hybrid and mixed methods become less attractive.

Additionally, in many of these earlier developments,

pointwise equilibrium conditions were often imposed in

selecting the assumed strain parameters [16,52-54,63,64].

This requirement places a severe limitation on the method's

14



usefulness, particularly in nonlinear applications.

Finally, these methods suffer from a lack of specific

guidelines for choosing appropriate stress (or strain)

parameters. In fact, many previous studies were conducted

on the basis of a trial-and-error procedure, in which

numerical tests were performed to determine the "best"

choice.

2.3

various

element

Element Selection/Justification

Having assessed the strengths/weaknesses of the

approaches available, a degenerated mixed shell

is chosen for the present research. The primary

objective will be to extend the analysis capabilities of the

5 and 9-node linear elements developed previously [19,61] to

include geometric nonlinearities.

As pointed out by Gallagher [25], the notion of

reduced integration is not fully justifiable on theoretical

grounds. The same might also be said of many of the other

schemes cited in Section 2.1. The mixed element, on the

other hand, is of sound theoretical basis. All energy

contributions are included, since exact integration is used

throughout. Additionally, this "gimmick-free" attribute

enables mixed elements to be more easily extended for

various nonlinear applications.

Even at the linear level, there are indications that

mixed element formulations will be more successful in

nonlinear analysis. Here, the mixed models, when compared

15



to the equivalent displacement-based element, were observed

to be much less sensitive to distortion and substantially

more accurate in evaluating stress [19,26,59-61]. This

takes on added significance in nonlinear analysis, where :

(i) even initially undistorted elements become distorted in

highly geometric nonlinear settings, and (ii) the iterative

solution process involves calculation of an out-of-balance

load term, which is directly related to the element's

current stress state. By being less sensitive to distortion

and more accurate insofar as stress calculations are

concerned, it follows that the mixed element, when compared

to its equivalent displacement-based model, may converge in

fewer iterations over the same size load step. Thus, the

mixed element, despite requiring more effort to form the

element stiffness matrix, quite possibly may be able to

recover a large portion of this expense in a full-blown,

nonlinear finite element analysis.

Finally, mixed element formulations are attractive

due to their flexibility with regard to choosing the assumed

strain polynomial. The "standard" elements have no such

freedom, and are therefore more prone to locking. This is

discussed more thoroughly in Section 5.2.

16



CHAPTER 3

ELEMENT DESCRIPTION

Set

necessary to

location and

forth in this chapter is the methodology

effectively track a typical shell element's

subsequent deformation during an iterative

step-by-step solution process. Inasmuch as the analysis is

essentially a generalization of the linear case [19,61],

information provided in these earlier works (also see [34].)

is again made use of here.

3.1 Coordinate Reference Frames

To adequately describe position and motion of the

shell, three separate Cartesian coordinate systems are

required_ These reference frames are illustrated in Figure

1 for the degenerated 9-node Lagrange shell element.

3.1.1 Global System

Typical of most formulations is a global system,

defined in Figure 1 by the orthonormal base vectors e , e
"i "2

and e . It functions to determine both the element geometry
-3

and its nodal translational degrees-of-freedom.

17



4

A Degenerated 9-Node Lagrange Shell Element

Figure 1

18



3.1.2

frame is

f(k)
e , is
i

freedom.

Fiber System

At each node, a unique local Cartesian reference

constructed. This fiber system, designated as

used to define the nodal rotational degrees-of-

To insure uniqueness at noncoplanar element

intersections, the thickness direction must be defined (as

user input) by specifying coordinates of the shell's top and

bottom surfaces. At node "k" then,

f(k) + - + -

e = ( x - x ) / I [ X - X [ ] (i)
"3 "k "k "k "k

where x = (X,Y,Z) are the global Cartesian coordinates, and
-k

[], [[ the Euclidean norm of a Vector. If coplanar, only

middle surface geometry is required, with the fiber

thickness direction specified as

f(k)

e = ( x x x ) / ]I x x x ] I (2)

"3 "k,r "k,s "k,r "k,s

where the comma denotes partial differentiation with respect

to the indicated coordinate directions.

Regardless of the method chosen, once the fiber

thickness is defined, specification of the two remaining

fiber directions proceeds according to

f (k) f (k)
e = e x e

"I "2 "3

f(k) f(k) f(k)
e = e x e

"2 "3 -I

(3)
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If the global Y-axis should happen to coincide with
f(k) f(k)

fiber direction, e and e are defined instead as
rl "2

the

f(k) f(k)
e = e x e
"2 "3 -i

(4)

f(k) f(k) f(k)
e = e x e

"I "2 -3

As the incremental analysis proceeds, this system

rotates rigidly along with the nodal fiber. Fiber direction

components are continually updated using a forward Euler

method with a sufficiently large enough number of

integration interva_s_(code defau!t_is 20), i.e.

t+At f(k) t f(k) ( t f(k) (k) t f(k)

e = e + _ - e de + e d8 (5)"3 "3 "2 1 -I 2

where the left superscript is the time "variable" used to

reference the current load step configuration. If

iterations are required within the load step, "t" and "t+_t"

could then, of course, be replaced by iteration counters "i"

and "i+l", with the equation being equally valid.

3.1.3 Lamina System

At each (r,s,0) integration point, a local Cartesian

reference frame is defined such that two of its axes are

tangent to the lamina (or middle) surface. This system,
1 1 1

specified by three orthonormal base vectors e , e and e ,
"i "2 "3

is constructed such that the in-plane laminae and natural

coordinates share the same angular bisector (see Fig. 2)
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Lamina Coordinate System Construction (Plan View)

Figure 2
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e. = x,r / {I x,r {{
r

1
e

"3

e. = _,s/ !1 _,_ II
S

=¢e x e)/lle x ell
"r "s "r "s

e = ( e +e)/ll e +ell
"a "r "s "r -s

(6)

1 1
e = ( e x e ) / I1 e x e II
-b "3 "a "3 -a

1

e = ( e

-1 "a

1

e = ( e

"2 "a

-e ) i IIe -e II
-b "a -b

+ e ) / II e + e II
"b "a "b

Defining the lamina coordinates in this fashion is necessary

in order to insure invariance of the stiffness- ma£rix for
1

nonrectangular elements. For the undistorted element, e
1 "I

and e degenerate to e and e , respectively.
"2 "r "s

3.1'4 Ad_itiona! observations +_ ................

As demonstrated for the 5-node element in Figure 3,
1 f

e and e , in general, do not coincide. In the first case,
"3 -3 1
nonuniform element thickness causes e to deviate from the

"3

fiber direc£ion. Figure 3(b) illustrates complications

introduced when modelling shell-to-shell junctions. As a

final example, the straight-sided quadrilateral simply

cannot accurately define a curved geometry, which once again
1 £

leads to a misalignment between e and e . This, in fact,
"3 "3

provides insight as to the proper procedure for generating
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Ca)
L

ef(k) _

(c)

1
Misalignment of e3 and the Fiber Direction

Figure 3

23



unique fiber reference frames. In general, equation (2) may

be used for the 5-node element only if the initial geometry

is flat. Similarly, for the 9-node element, if the

structure may be defined geometrically by at most a second-

order curve, (2) will generate identical fiber thicknesses

for all elements sharing common nodes Equation (i) would

be applicable for more complex geometries. Of course, (i)

should be used regardless, if either of the situations

depicted in Fig. 3(a) or 3(b) exists.

Since the integration point-based lamina system

rotates rigidly as the element deforms, it is also the most

convenient for: (i) introducing the plane stress assumption,

(ii) defining the constitutive relations, and (iii)

interpolation of the assumed strain field. In this context,

the strain-displacement operators, written in terms of

global

require

in the

defining an orthogonal matrix T at each (r,s,0)

point, i.e.

1

xITx

translational degrees-of-freedom, will naturally

a transformation if they too are to be represented

lamina reference frame. This is accomplished by

integration

(7)

where T consists of

and lamina coordinates.

direction cosines relating global

The transformation matrix defined

above may then be used to obtain strain components with

respect to the current lamina reference frame.

z
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3.2 Geometric Description

The elements considered in this work are the

nonlinear counterparts of [19] and [61], i.e. the 5-node

quadrilateral and 9-node curved shell elements, which for

later discussion are designated here as SHELM5 and SHELM9,

respectively.

degenerated

fields are

bottom surfaces may have been used in specifying the

direction, in all other respects the elements are

considered middle surface models.

Consistent with the isoparametric formulation,

position of a generic point in the element is defined in

As before, these elements are basically

shells except that both displacement and strain

independently assumed. Even though top and

fiber

still

n

t _ f(k)
- h N e

2 k k-3

k=l

terms of natural coordinates as

n

x(r,s,t) = _ 'N x +

- Z__ k'k

k=l

(8)

where, n = number of nodes used to describe element g_ometry

x = position vector of nodal point "k" on the refer-
--k

ence surface

h _ shell thickness in fiber direction at node "k"

"k

and N are the two-dimensional shape functions associated
k

with node "k". The usual interpolations [4,21,73] still

apply for SHELM9, with those of [61] again used here for the

5-node quadrilateral
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2 2

N (r,s) = (I - r ) * (I - s )
5

1 1

N (r,s) = - (i + r r ) * (i + s s ) - - N (r,s)
k 4 k k ' 4 5

(9)

In keeping with the linear element formulation, for

SHELMS, only coordinates of the corner nodes (n=4) are used

However,to define geometry in the initial configuration.

as the solution proceeds, aii five nodes are utilized in

defining both x and u.

(1)-(4) and (8)

together

domain.

Also of note is that equations

uniquely map a biunit cube into the physical shell

Thus, for a fixed pair of (r,s) values, the line

obtained from (8) corresponds to a fiber. A lamina surface

results if "t" is held constant_

3.3 Kinematic Descripti_

three

and

axes

At each node, five degrees 0f freedom are defined;

translations (u,v,w) along the global Cartesian axes

(k) (k)
two rotations 8 and 8 about mutually perpendicular

f (k) f (k) 1 2
e and e normal to the fiber thickness direction

1 2
Figure i). Elements SHELM5 and SHELM9 thus contain a(see

total of 25 and 45 degrees-of-freedom, respectively.

Motion is defined by adopting the usual kinematic

assumptions for degenerated element models: (i) Mindlin/

Reissner plate theory applies, thus enabling shear

analysis, (ii)

no transverse

incrementally,

deformation effects to be included in the

plane stress conditions prevail, so that

normal stress is developed, and (iii)
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rotations are small (embedded in (5) also).

assumptions, element matrices can be formulated

using standard isoparametric element procedures.

Considering (8) at times "0", "t" and "t+_t",

expressions for total and incremental displacements for a

generic point in the element are given as

With the above

directly

n n

_ t t Z t f(k) 0 f(k)
u = N u + - hN ( e - e
" k "k 2 k k "3 "3

k=l k=l

) (io)

n n
t t+At f(k) t f(k)

As =_ N Am + - _ h N ( e - e- k "k 2 k k "3 "3
k=l k=l

) (11)

where, u
"k

= translation of nodal point "k" referred to
t 0

element midsurface ( x - x )
-k -k

the

Au
"k

= incremental translation of nodal point "k"

t+_t t
referred to the element midsurface ( x - x )

-k -k

_with all other variables defined as before.

the linearized approximation for (5) into (Ii),

displacements within an element may now be

Substituting

incremental

described in

terms of the nodal point incremental translations and

rotations

n n

Au = N Au + h N (- e e + e
k "k k k "2 1 "i

k= 1 k= 1

(k)
e ) (12)
2
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The finite element solution will yield the nodal point
(k) (k)

variables Ziu , 8 and 8 , which are then substituted
-k 1 2

back into (5) to accurately define the current updated fiber

system [4].

Utilizing (i0) and (12), expressions for the global

strain-displacement relationships can be written as

g g
e = _u / _x = B q (13)
.... NL

g g

where, e , z_e

g g
B , B
"L "NL

- =

g g

Ae. = _A.U / _x = B zi.q (14)
- "n

= initial (time "t") and incremental global

strains ordered as
T

(e , e , e , y , y , y )
X Y Z XY YZ XZ

= linear and nonlinear global strain-

displacement operators (p. 377 of [4])

q, _q = ini£ial and incremental nodal displace-

ments ordered as

(I) (i) (n)
[U ,V ,W ,8 ,8 , ... U ,V , W ,8

1 1 1 1 2 n n n 1

(n) T
,e ]

2

T

[ ] = transpose of a row vector

The transformation defined in (7) may then be employed to

obtain strain components referred to lamina coordinates. As

described in Chapter 4, this is the preferred system in

which to define the requisite finite element equations.
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Finite

mechanics are

CHAPTER4

FINITE ELEMENTFORMULATION

element methods in structural and solid

frequently formulated via a' variational

approach. This chapter traces the element development from

an incremental modified Hellinger-Reissner principle on

through to the final set of finite element equilibrium

equations. The variational is termed "modified" because

strain assumption is employed. Although equivalent to the

stress formulation in linear analysis, a strain assumption

does offer distinct advantages for nonlinear applications.

For example, in the case of material nonlinearity, the

bendingstrains may still be assumed to vary linearly in the

shell thickness direction. This is certainly no longer true

for the corresponding stress components. Moreover, material

models residing in existing displacement-based finite

element programs can still be utilized for the mixed methods

without major coding modifications.

With respect to the finite element approximation for

strain, decisions must be made regarding: (i) the reference

frame to which the strain components are to be defined, and

(ii) the coordinates in terms of which the polynomial basis

functions for these strains are written. Although any
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reference frame could be used (global, local, curvilinear),

lamina coordinates are preferred because they are the most

natural system in which to define the shell constitutive

relations together with the zero normal shell stress

assumption. To achieve the necessary element invariant

property, strain polynomials interpolated in global

Cartesian coordinates must be complete. This requirement

would, however, negate one of the mixed model's most

attractive features; namely, the freedom to judiciously

select shear strain parameters to alleviate locking.

Expressing in terms of natural coordinates instead, the

invariance requirement is easily satisfied. In the

derivations that follow then, a lamina system reference

frame with strain polynomials expressed in natural

(isoparametric) coordinates is implied.

Included in the formulation are nonlinear effects

stemming from large displacements. In dealing with

geometric nonlinearities, a total (TL) or updated (UL)

Lagrang_an approach may be used to describe the state of

deformation. TL formulations refer all static and kinematic

variables to an initial configuration at time "0", while an

UL approach uses the previously calculated equilibrium

configuration at time "t" as its reference. Both

incorporate all kinematic nonlinear effects due to large

displacements, rotations and strains so that, in theory,

identical results should be obtained regardless of the
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method chosen. In the present context, use of a rotating

integration point-based lamina reference frame suggests an

UL formulation might be the more efficient approach.

Finally, the issue of strain history for geometric

nonlinear analysis must be addressed. In displacement-based

element formulations, the strain (and therefore stress) at a

point at any time "t" is obtained simply by differentiating

the total displacement. This is not the case in a mixed

formulation, however, where strains are interpolated

incrementally. To determine the total strain at any time

"t", it is therefore necessary to sum and store incremental

strains

solution

course,

strain/stress history. This aspect of the formulation

further discussed in Chapter 6.

at the integration points throughout the entire

process. For material nonlinear analysis, of

even the standard element requires some type of

is

4.1 Incremental Modified Hellinger-Reissner Variational
Principle

Although the functional outlined below may be used

for large deflection, large strain analysis, the current

research is confined to small strain applications. Provided

an appropriate incremental strain energy potential can be

defined, material nonlinear effects may also be

incorporated.

tensor,

With regard to the specific nature of the strain

an UL formulation requires use of Almansi (total at
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time "t") and updated Green (incremental) strains. The

energy-conjugate stresses are then the Cauchy and updated

2nd Piola-Kirchhoff stresses, respectively [70].

As with any incremental step-by-step solution, the

static and kinematic variables in some equilibrium

configuration at time "t" are assumed to be known, with the

objective being to determine their values in some unknown

equilibrium configuration at time "t + _t". A modified

Hellinger-Reissner variational principle [51] provides the

starting point for the incremental analysis:

T T_HR(_u'Ae) = [-I/2 Ae C _e + (e + _e) C _e

T T

- Ae C (e - e) - (F + AF) AU] dV

where,

_ _ T- [(T + _T ) Au] dS

- [AT (Au - A_ + u - _1 + T Au] dS (15)

u

11, _u = initial and incremental element displacement

_e = independently assumed element incremental

updated Green strains (see eqtn. 24)
A

_e = element incremental updated Green strains

derived from displacements

e = element strains at time "t" from assumed

strains

z

=

i
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A

e = element Almansi strains at time "t" derived

from displacements

C = material stiffness matrix (_ = Ce)

F, a_ = initial and incremental element body forces

T, AT = initial and incremental element boundary

tractions

T

( ) = transpose of a column vector

(--) = prescribed quantity

V = element volume

S ,S = portions of element
u

over which tractions and displacements are

prescribed, respectively

(S U S = S ; S n s = 0)

U 0 U

boundary surface area S

Invoking the stationarity conditions of (15) with

respect to variations in a_ and a_ yields the corresponding

Euler equations. In indicial notation, they are expressed

as

e = e = 1/2 (u + u - u u ) (16)

" i,j j,i k,i k,j
A

Ae. = Ae. = 1/2 + Au
(Aui, j j, i

+ Au Au ) (17)
k,i k,j

(ri 3' + ASi] ') 'j + [(Tkj+ ASkj) AUi,k]'J + (Fi + AFi)=0 (18)

along with the associated boundary conditions on So and S .
u

Equations (16) and (17) are the strain-displacement compat-

ibility relationships, while (18) represents the nonlinear
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stress equilibrium condition. Here, th_ material stiffness

matrix linking stress to strain has been substituted.

Lumping the body force and surface integral

contributions into a single externally applied load term _,

equation (15) is simplified to the following form

(AU,Ae) = [-i/2 Ae C Ae + e C D (AU)ATTHR " " v .... L
T T

+ e C D (AU) + Ae C D (Au)
" NL L

T T •

- Ae C e + Ae C {D (u) + D (u))] dV
L NL

T

- Q. Au (19)

where

further classified

derivative operators

e = D (u) + D (u) =
" L " NL "

according

those strains'derived from displacements

to linear and

have been

nonlinear

1/2 (u + u ) - 1/2 u u (20)
i,j j,i k,i k,j

_9 = D (_u) + D (_u) =
L NL

1/2 + Au ) + 1/2 au au (21)
(Aui, j j,i k,i k,j

T

and the higher order term, _e C D (du), has been neglected.
NL

It is worth noting again at this point, that (19) is

with respect to the lamina coordinate system at time "t" SO

that each of the derivative operators, as well as the

-z
L
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independently assumed incremental strains and constitutive

relations, are local in nature. Specifically, this implies

a transformation from global Cartesian reference frame for

(20) and (21), and a material stiffness matrix of the form:

2
C = E/(l-v ) =

1

V

0

0

0

v 0 0 0

1 0 0 0

0 (l-v)/2 0 0

0 0 k(l-v)/2 0

0 0 0 k (l-v)/2

(22)

where, E = Young's modulus

v = Poisson's ratio

k = shear correction factor (assumed to be 5/6)

As discussed earlier, the independently assumed strains (see

eqtn. 24) are interpolated in the current lamina coordinates

and, as such, require no additional transformation.

Since displacement derivatives appear in the

variational, continuity requirements necessitate their being
O

at least C -continuous. The strains, on the other hand,

require no differentiation and are therefore permitted to be

discontinuous across element interfaces. Consequently, the

strain parameters may be eliminated at element

leading to a stiffness matrix formulation similar

conventional displacement-based elements.

Finally, it is also of interest to

compatibility mismatch terms are included

level,

to the

note that

in the
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formulation. Solutions obtained using standard displacement

models automatically satisfy this relation since, by

definition, strains are computed as derivatives of

displacements. Mixed methods, however, interpolate strains

independently from displacements and may therefore violate

this most important requirement. To minimize drifting of

the solution, the mismatch terms must be retained.

4.2 Finite Element Approximation and Element Stiffness
Matrix

In the finite element discretization, _u is

interpolated in terms of nodal displacements, while A_ is

approximated by a set of generalized strain parameters

AU = .N _q (23) ,

Ae = P A_ (24) :
[

[
Substitution of (23) and (24) into (19) leads to

T T T

(Aq,A_) = -1/2 A_ H /_ + Q Aq + 1/2 Aq K Aq
..... 1 " " "NL "

T T T

where, I TH = [P C P] dV
V

G = [P C B ] dV
" V " " "L

-I T "_KNL- [B T B ] dVV "NL- "NL

Q = [B C e I dV
"I V "L" "

(25)

(26)

(2v)

(2s)

(29)
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z =Iv [PTc e] dV

I TW = [P C e] dV
-- V " "

Q = terms in Q of (19)

(30)

(31)

(32)

B = linear strain-displacement operator
-L

referred to lamina coordinates

g
( B =T B )

"L "L

B = nonlinear strain-displacement operator
"NL

referred to lamina coordinates

g
(B =TB )

-NL " "NL

I

11"3 (symmetric)

I • I
12"3 22-3

T I _ I • I

13-3 23"3 33-3

1 0 0 ]
; I = 0 1 0

"3 0 0 1

(23)

(34)

(25)

Invoking the stationarity of (25) with respect to

strain yields _@ in terms of A_

-1

_ = H [_ _9 + (_-_)3 (36)

The incremental strain parameters are eliminated at element

level by substituting the above relation back into (25).

After some manipulation, the functional reduces to
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ATTHR(nq) -

T T -i T T -i

1/2 ng G.S .Ung + ng .GH (Z-W)
T -I T

+1/2 (z-w) H (Z-W) + Aq Q

T T

+i/2ng g_g - zxg ? (37)

Stationarity of the functional, now with respect to

Aq leads to

K Aq = Q - ( Q + Q )
" "I "2
T -i

K_ GH G + K
.... NL

T -1

Q = G H (Z-W)

(38)

(39)

(4O)

where K represents the element tangent stiffness matrix, and

Q an additional right-hand-side load vector contribution
"2

appearing as a result of including compatibility mismatch

terms in the original variational statement. Any

Corrections for equilibrium mismatch are also intrinsically

included in the

internal stresses

solution process.

formulation as Q functions to balance
"i

with external loads in the iterative

Solving for _q in (58) leads to an approximation for

the nodal point displacements at time "t+_t" i e

t+nt t

g = g + _g (41)

By inserting A_ back into (36), the corresponding

incremental strains can be obtained from (24)
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-I

&e = Pa_ = P H [Gaq+ (Z-W)] (42)

Adding

total strains at time "t+_t".

obtained from (22) as

to those at time "t" yields an approximation to the

Stresses are then directly

= C e = Ae = P H [G. Aq. + (Z-W)]..

However, because of

linearizations involved,

very significant errors.

usually necessary to iterate until a solution

obtained to "sufficient accuracy".

(43)

the various assumptions and

such a solution may be subject to

it isIn practice therefore,

for Aq is

4.3 Recovering the Linear Element

The corresponding linear element may be recovered

from (15) simply by assuming that all terms associated with

initial effects vanish. For clarity, the "_ 's" are dropped

so that the functional for the linear element becomes

(u,e) I [-I/2 e T T A T

= . C e + e C e - F u] dV

TIH -- v T I T[T u] dS - [T (u - u)] dS (15")

S_" " S u - - "

The above is further simplified, by again lumping the body

force and surface integral contributions into a single

externally applied load term

eTc e + eTc DL(U ) ] dV Q u (19)"[]'HR(U,e) = V[-i/2 .. . - -- •
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In the finite element discretization, u is

interpolated in terms of nodal displacements, while e is

approximated by a set of strain parameters

u = N g (23*)

e = P _ (24*)

Substitution of (23*) and (24*) into (19.) leads to

T T T

77 (q,_) =-1/2_ _ + _ G q - Q g (25*)
HR " "

where H, G and Q have been defined previously in (26), (27)

and (32). As before, the stationarity of (25*) yields _ as

a function of

-i

= H G q (36*)

: The strain parameters are eliminated at element

level by substituting _ back into (25*). Variation of the

resulting functional leads to

Kq =Q

where the stiffness for the linear element is given by

T -I

K= G H G

(38*)

(39*)

E

z

E

Once the nodal point displacements q have been

calculated, the corresponding strains are obtained from

(36*) and (24*)
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-I
e= P_. = PH G q (42*)

Element-aligned stresses are then recovered

stress-strain relation defined in (22)

-I

_= C e = C PH G q

using the

(43*)
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CHAPTER 5

STRAIN APPROXIMATION

Derivation of the nonlinear SHELM5

elements is complete once the strain polynomial

i.e. entries of P in (24), are determined.

is the most crucial point of the development.

if the polynomial chosen is of insufficient

energy modes may develop. At the other

and SHELM9

functions,

This, in fact,

For example,

order, zero-

extreme, an

excessive number of strain parameters will ultimately result

in the element locking when used in constrained media

applications.

In [19,61], several useful concepts and criteria

proposed in the literature were assessed and synthesized in

an attempt to develop a general framework for the selection

_- . It wasp_oced_re

considerations should

polynomial functions:

concluded that, in general, fou_

be given in choosing the strain
i

(i) all kinematic modes must be

suppressed, (ii) constraint index must be greater than zero,

(iii) element properties must be invariant, and (iv) whether

or not the stress calculated from the assumed strain

functions should satisfy the pointwise equilibrium

requirement.
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As in these earlier studies, here too, equilibrium

is relaxed. The decision appears justified since, as

demonstrated in (18), this requirement is in fact fulfilled,

at least in an averaged integral sense. Moreover, the

right-hand-side

equilibrium as

applied loads.

focus on items

selection process.

load vector term Q indirectly enforces
-I

it "balances" internal stresses with the

The remainder of this chapter then will

(i)-(iii) and their influence on the

5.1 Suppression of Zero-Energy Deformation Modes

A necessary requirement for the element stiffness

matrix to be of sufficient rank is that the number of strain

parameters should be greater than or equal to (d-r), where

"d" is the total number of displacement degrees-of-freedom,

and "r" the number of rigid body modes. Since multiple

strain parameters may correspond to the same deformation

mode leaving some degrees-of-freedom "unsuppressed", the

above condition is certainly not sufficient to ensure proper

rank. Based on considerations of deformation energy, it was

further suggested in [54] that the total number of strain

parameters should indeed be kept minimum, while

simultaneously suppressing all kinematic deformation modes.

Not only is this least-order approximation desirable with

regard to constraint index arguments, but it is the most

computationally efficient approach as well.
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5.2 Locking and the Constraint Index

Because various deformation modes may activate more

than one strain component, there is some flexibility with

regard to the manner in which these modes are suppressed.

Indeed, it is precisely this freedom in choosing the strain

polynomial which enables the mixed element to filter out

"troublesome" terms, thus alleviating locking. To

illustrate, consider the degenerated plate/shell incremental

strain-displacement relations expressed in natural

coordinates

A

Ae
"m

A

Ae -
"b

_Au

_r

_Av

_s

_Au _Av
u_m _- Diw

_s ar

_Aer

_r

_Aer _Aes

3s 9r

_Aw
--- - Ae
_s s

_Aw
--- + be
_r r

(44)

(45)
=

(46)

-i
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Since displacement modes corresponding to _8 and _8 appear
r s

in both bending and shear strain expressions, to minimize

constraints (shear), given a choice_ _ 's selected to

suppress the _8 and _8 modes are assigned to the bending
r s

components.

The standard displacement-based element, of course,

has no such flexibility. All displacement modes associated

with _8 and A8 are carried along in the shear strain
r s

expression. This element naturally then is much more likely

to lock as the plate/shell thickness becomes small.

Constraint index concepts provide the motivation for

discussions such as the one above. As originally conceived

[44], they were developed in an attempt to analytically

gauge an

relating

relations.

element's behavior in some limiting case by

deformation degrees-of-freedom to constraint

In equation form:

CI = NK - NC (47)

where, CI = element constraint index

NK = number of kinematic

brought by an element when added

existing mesh

NC = number of independent constraints

duced in the limiting case (thin plate

the present context)

degrees-of-freedom

to an

intro-

in
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The constraint index then is a measure of the "true degrees-

of-freedom" brought to the finite element mesh. Positive

values of CI suggest that the element will behave favorably,

while CI < 0 indicates failure in constrained media

applications.

5.3 Element Invariance

As discussed in the previous chapter, natural

coordinate representation of the strain polynomial is the

most

property.

required

frame.

effective means of achieving the element invariant

Also noted in Chapter 3 was the special treatment

in constructing the lamina coordinate reference

Specifically, the in-plane laminae and natural

coordinates must share the same angular bisector (see Figure

2).

is

always

Figuces

k

As a counter-example, assume that the lamina system
1 "i

defined such that e (designated as e in Figure 4) is
"I -i

directed along the natural coordinate r-axis.

4(a) and 4(b) illustrate two of the four possible

element numbering schemes. Because of the nonzero
A 1 .... 7_

distortion angle e, e in (a) rotates by only (90-e) degrees

if renumbered as in (b). Since renumbering implies a 90-

degree rotation in the re-plane (strains _e (r,s) and _e
"I ll 22

(r,s) are orthogonal) and e rotates only (90-e) degrees,
"i

the invariant property is lost for all but the undistorted

rectangular elements. The equal angle bisector approach
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(a)

j'I 4
lib

(b)

Invariance and the Lamina Coordinate Reference Frame

Figure 4

47



1
always rotates e in 90-degree increments in the

"i
regardless of the numbering scheme chosen.

The above is still not sufficient to

invariance.

symmetric

variables,

re-plane

guarantee

Clearly, if the strain polynomial is not

with respect to permutation of the "r" and "s"

the elements of Figure 4 (a) and 4 (b) would yield

two distinctly different responses. To summarize,

invariance is assured only if: (i) a balanced strain

polynomial is used (e.g. for every s-term in _e , there is
Ii

a corresponding r-term in _e ) and (ii) it is written with
22

respect to an equal angle bisector lamina system.

5.4 Strain Polynomial Functions

When considered together, the above guidelines lead

to strain being approximated in terms of natural coordinates

Ae=

P
m

0

0 P
"b

m

n

(48)

where subscripts m, Y ,and b refer to membrane,

bending, respectively. For SHELM5

shear and

P
"m

Ire0000

0001re0

0000001

(49)
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p_ = [irs 0 0]00rls
(50)

and for SHELM9

p

-m

2 2
1 r s rs s rs 0 0 0 0 0 0 0 0 0

2 2

0 0 0 O r 0 1 r s rs sr 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 Irsrs

2

1 r s rs sr20 0 0 0 ]0 0 0 0 rs 1 r s rs

(51)

(52)

with bending strains for both elements defined as

p = t • p (53)
"b "m

The above interpolations correspond exactly to those given

in [61] and [19]. This is to be expected since the present

study is a natural generalization of these earlier works.

Equations (49)-(53) represent a least-order approxi-

mation for strain which simultaneously suppresses all

kinematic modes. It is easily verified that the invariant

requirement is also satisfied. The constraint index and its

predictive capability

discussion, however.

Illustrated in

related to locking

Figure 5 are CI

elements SHELM5 and SHELM9.

problem, no degradation

anticipated, as CI > 0 in

warrant further

calculations for

Applied to the shear locking

in element performance is

both cases. However, once
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Existing mesh

Shear (plate)
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CI : ÷!

(a) Element SHELM5

A
v

/tllti/ tll t

' F

' i'=

Shear (plate ]

NK = 12
T_

NC=9

C[ =',5

Existing mesh

(b) Element SHELM9

Shear _- Membrane

NK = I0

NC = 12

C[ -- -2

Shear,,- Membrane

NK= 20

oNCe= 24

Ci ---4

EL

Constraint Index Calculations

Figure 5
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membrane constraints are introduced, (47) suggests potential

problems. It was argued in [19] that perhaps a direct

application of the constraint index is too severe.

Requiring _ --> 0 is realistic because shear strain must

vanish for thin plates/shells subject to transverse loading.

But, since many shell problems of practical importance are

dominated by membrane actions (and hence, _@ is in fact
m

nonzero and therefore should not be required to vanish),

equation (47) is viewed as being overly pessimistic.

In light of the above discussion, apparently

interpretation of the constraint index applied to shells is

a much more difficult issue to deal with. Indeed, whether

or not a constraint is active will depend upon the structure

geometry and loading. Boundary restraints enter in as well,

so that the constraint index is very much a problem-

dependent quantity. Trouble-free performance is assured for

nonnegative C I, since (47) represents a worst-case limiting

criteria. However, CI _ 0 does not necessarily indicate

failure, since it is not entirely realistic to think that

all constraints will be active simultaneously.

5.5 Element Distortion Considerations

The elements considered may encounter two levels of

distortion; namely, that due to: (i) curvature, and (ii)

deviation from rectangular configuration in plan view. The

integration point-attached rotating lamina system

automatically incorporates the effects of curvature
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throughout the entire deformation process. For elements

skewed in the local rs-coordinates, the following covariant

coordinate transformation is introduced

! T
e = J e J (54)

J is the element centroidal Jacobian transformation

and natural

Jacobian is

assumed strain

where,

matrix in the rs-plane relating lamina

coordinates. The constant (centroidal)

essential to maintaining the order of the

polynomial. Evaluated otherwise might trigger the formation

of kinematic modes or induce the locking problem once again.

The above transformation was not included in earlier

formulations [58,61]. In [58], mesh distortions were

compensative, so that the overall system response was not

severely degraded. For unidirectional skewed problems (see

[19], [45] and Section 7.2) however, special treatment is

required in the form of (54) to reduce the element's

sensitivity to distortion.
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CHAPTER6

IMPLEMENTATION

Described herein are the necessary modifications to

attach elements SHELM5 and SHELM9 to an exgsting finite

element analysis program. A research-oriented code, NFAP

[17], is chosen, although the following discussion is

appropriate to any general-purpose nonlinear finite element

package. As has been earlier demonstrated, since strain

parameters are eliminated at element level leaving only

nodal displacements as unknowns, the mixed elements are made

transparent from a user standpoint. Once in place, the user

thus requires no additional information with regard to the

underlying theory in order to effectively use these

elements.

6.1 Program Flow

The overall program flow for NFAP is outlined in

Figure 6, where those portions affected by the addition of

elements SHELM5 and SHELM9 are indicated in boldface type.
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Yes

le No

NFAP Program Flow

Figure 6
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Figures corresponding to these points of modification

discussed below:

are

FIGURE 7 : Subroutine NFAPIN processes nodal point

data (IND = 0) and directs the pressure load

calculations (IND = 2).

FIGURE 8 : ELCAL calls appropriate subroutines to

calculate element storage requirements. Any

element-related quantities needed at problem start

(e.g. nodal connectivity,

are also defined.

FIGURE 9 : LSTM drives

initial fiber system)
i

the linear analysis.

Element

stored in ADDBAN.

FIGURE i0 : ASSEM

calculation as well.

stiffness matrices are computed and then

directs element stiffness

Indicated flow is for the

nonlinear case (IND = 4).

FIGURE II

equilibrium

analysis.

FIGURE 12 :

: EQUIT drives the solution during

iteration (ICOUNT = 4) in nonlinear

analysis or for nonlinear analysis at end of

step.

Element stress calculation for linear

load

In total, 19 subroutines are affected by the above

modifications. Some are only slightly altered to accomodate

the new elements, but in most instances entirely new
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IND = 0

INFAPIN I

[ IND = 2

I

IINITALI

I I i

I
I
I_

I' I
z

Subroutine NFAPIN

Figure 7
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!TFN!T9!

I ELCAL I(IND = 0)

1
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.1. A,

NPAR(1) = 9

I

I
IMQS_ELI

I
!Di_csgl[v_c_o_]

I,
I
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I ,

Ico_Tl _NTwAgl

Non]Ifnear _

IELTgD31

IIEPL93 I

Subroutine ELCAL

Figure 8

r
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I

1

IASSEM I

I
I As!L_I

1 ± 1 ; 1

! I !_91 IDERIQgl

NPAR(1) = 9

_ i

!_,_1

I
!

I__ 1

1
IMoDI_

1

Subroutine LSTM

Figure 9
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I

±

ASSEM

IND = 1 : Linear (see Figure 9)
IND = 4 : Nonlinear

I

±

Iloi csgj
I

I, I

IoERI091IELTg031

TRANSF I

KIIIIII',
,I

Subroutine ASSEM

Figure i0
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f
_LE_TI

I

EQUIT [(ICOUNT = 4)

(see Figure I0) I
=

Subroutine EQUIT

Figure ii
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±
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I
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±
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I
I
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Linear

i l

!P_T91 iT_NSFi

[VECTOR]
I

IELTg03!

!

NPAR(1) = 9

I

!

Subroutine STRESS

Figure 12
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subroutines (denoted by "*") are written.

each follows:

A description of

* DERIQ9 : Defines the linear and nonlinear global

strain-displacement operators (equations 13 and

14) at integration point (r,s,t),

* DIRCS9 : Driver for construction of the lamina

coordinate system (equation 6!.

* ELPL93 : Records strain hlst_ry throughout the

nonlinear incremental solution process_.

, ELTgD3 : Ai[ocates in£egrat_on poln% _s£orige for

nonlinear analysis.

* FNCT9 • Calculates shape functions and Jacobian

operator at element middle surface.

* FUNCT9 :

and Jacobian

ir, s,t) .

* IEPL93 :

problem.

Calculates shape functions (equation 9)

operator at integration point

initializes storage for the nonlinear

INPUT : Existing subroutine modified to allow for

the twO-s_rface input option (equation i).

* INTWA9 : Drives storage initialization for non _

linear analysis.

* MODIFY : Calculates condensed stiffness, loads and

displacements (equations 56, 58 and 59). Only

called if middle node condensation option is

active (IETYPE = I).
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* MQSHEL : Driver for the mixed shell element.

Defines the fiber system and element nodal

connectivity at problem start. Cails appropriate

subroutines to calculate and store element

stiffness matrices. Directs element stress

calculations at the conclusion of each load step.

NFAPIN : Existing subroutine modified to allow for

the two-surface input option (equation I).

* PMAT9 : Evaluates P-matrix (equations 49-53) at

integration point (r,s,t).

PRESSL : Existing subroutine modified for elements

SHELM5 and SHELM9. Drives the pressure load

calculations.

PRESS : Existing subroutine modified for elements

SHELM5 and SHELM9. Positions equivalent nodal

force Pressure loads in global array.

* PRESS9 : Calculates equivalent nodal point forces

due to pressure load. Limited to loads applied

normal to the shell surface (IFC = 5) and those

independent of deformation (IPGD = 0).

* QUAD9 : Drives formation of the element stiffness

matrix (equations 26-35 and 38-40).

* SHEL9 : Allocates storage for mixed shell element.

* TMAT : Handles transformation from global to

lamina reference frame (equation 7).
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As mentioned previously, the current research is

confined to g_ometric nonlinear analysis with small strain.

Consequently, when £otal assumed strains are required (e of
w

equations 29 and 31), ELPL93 sums the accumulated

incremental strains directly. The corresponding total

stress is then obtained according to _43). For large strain

analysis, additional transformations would be required. In

the present context, these transformations reduce

(approximately) to identity matrices.

It is recognized that mixed formulations, when

compared to the standard displacement-based models,

typically require more CPU time to form element stiffness

matrices of the same size. Therefore, any characteristic of

the formulation which lends itself to improving the

element's efficiency is to be taken full advantage of. As

an example, in linear analysis, stress is computed in MQSHEL
-I

according to (43*). Rather than re-computing H and G, a

more efficient strategy would be to write the matrix product

to tape as the element stiffness is being formed in QUAD9,

and recovering during the stress calculation phase. A

similar strategy is invoked for the nonlinear analysis. Not
-i

only are H and G written to tape, but comparison of (36)

and (40) reveals that the matrix product H (Z-W) is common
w m

to both equations. Therefore, as the right-hand-side load

vector term Q is being constructed in QUAD9 during
-2
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-I

iteration "i", the matrix product H (Z-W) is saved for the

incremental strain calculations of iteration "i+l".

6.2 Added Features

The difficulties encountered when attempting to

define unique fiber systems at shell interfaces has prompted

addition of a two-surface input option. As previously

described, this deficiency is artificially embedded in the

SHELM5 element for all but the flat plate problems. Sillce

the rotational degrees-of-freedom generated from these fiber

coordinates are retained as unknowns in the global system of

equations, unique fiber directions are essential if

meaningful results are to be obtained.

A second added feature involves a procedure for

internally condensing out the SHELMS center node degrees-of_

freedom. Condensation does not in any way enhance the

element's analysis capabilities. Instead, it is viewed as

more of a cosmetic improvement, since most pre-and-Post_

are not structured to handle elements SUch asprocessors

SHELM5.

For SHELM5, interelement continuity requirements

concern only the corner nodes, so that center node degrees_

of-freedom may be eliminated. In partitioned form, the

element equations are written as
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K ]lu"uu "u).

K

U

(55)

where subscripts "u" and "_" correspond to the retained

corner node and condensed centrai n_e :_degrees-of-freedom,

respectively. Incremental central node displacements are

obtained from_(55)-_ as _

Substitution

leads to

of (56) back into the first of equations (55)

where,

= condensed element stiffness
--l

= K - K K K
"uu

(57)

(58)

AN = condensed incremental load vector
-1

u "uA -AI 1

Since the order of the system matrices has been

storage requirements are likewise reduced.

lowered,

6.3 Help for the New User

Although it is not necessary for the user to possess

knowledge of the formulation's underlying theory, he/she

must still be aware of potential problem areas. As has been

repeatedly stated, knowing the conditions under which
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equation (2) may be correctly used to define the fiber

direction is fundamental to obtaining meaningful results.

The user must also be familiar with the method in which

rotational degrees-of-freedom are defined internally

(equations 3 and 4) in order to accurately specify boundary

conditions on rotations. The above considerations are

common to many middle surface shell element formulations and

should not be interpreted as a deficiency unique to

present work.

As described earlier,

developed for small strain,

only. Additional items which the user should be aware

are given in Chapter 7.

the

SHELM5 and SHELM9 were

geometric nonlinear analysis

of
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CHAPTER7

NUMERICAL RESULTS

As outlined in Chapter 6, elements SHELM5 and SHE_9

have been implemented into NFAP [i7 ], a general-purpose

nonlinear finite element program. All caiculatio_ reported

hereln were performed in double-precision on the IBM 3033

Computer at the University of Akron.

a

in previous papers [19,61]. Those additional

comprising the nonlinear set (Sections 7.4-7.11)

course restricted to small strain, geometric

analysis.

The linear problem set (Sections 7.1-7.3) is simply

collection of some of the more dramatic results presented

problems

are of

nonlinear

Other considerations/limitations include:

* integration order: for both linear and nonlinear

analysis, a (3x3x2) scheme is recommended

* Convergence criteria: displacement-controlled,

where the incremental norm must be less than

1/1000 of the norm of total displacements

II _ _ II < o.ool • II _ II
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* Solution method:

i.e. stiffness

each load step

* Formulation type:

exclusively

all full Newton-Raphson (FNR),

reformed for every iteration of

an UL approach is used

* Analysis t_y_p_e: static, i.e. no dynamic or

frequency analysis capabilities presently exist

* Pressure loading: must be independent of

deformation (IPGD = 0), with loads permitted

on the shell surface only (IFC = 5)

Load step and solution time information for the nonlinear

problem set is provided in Appendices A and B, respectively.

For discussion purposes, the various elements used

for comparison in the numerical results to follow are

designated as

Q9 : 9-node

element

Q9-URI : 9-node

isoparametric displacement-based

with exact integration

isoparametric displacement-based

Q9-

element with uniform reduced integration

: 9-node isoparametric displacement-based

element with uniform reduced integration

and stabilization matrix [I0]
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7.1 Patch Test

An important convergence requirement for an element

is to pass the patch test for arbitrary geometry. A mesh of

distorted elements are subjected to a loading which, in an

exact analysis, corresponds to constant strain conditions.

If the element does in fact represent the constant strain

state, the patch £es£ is passed.

In this context, for bending analysis, the element

assemblage must be able to assume a state of constant

curvature. To investigate element behavior in this regard,

a square cantilever plate subject to a line bending moment

along the free edge is considered, Mesh configurations are

shown in Figure 13 for SHELM9. Results for SHELM5 were

generated using similar (4x4) mesh layouts. As displayed in

Table 1, both elements are relatively insensitive to

distortions. Exact correlation is not to be expected, since

the transformation defined by (54) is only a constant-value

averaged correction.

7.2 Morley's Thin Rhombic Plate

Skew

challenging

moments at

plates have in the past been a particularly

problem due to the singular nature of bending

obtuse corners [45]. Additionally, since

arbitrary distortions can be compensative, unidirectionally

skewed mesh patterns may in fact be the more severe test of

nonrectangular element performance.
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(a] Regular

Moment = 0.50

Length =iO(squore)

Thickness = 0.10,

E = 30,000 -,
=, =0.30

. : j.i
w v v

L/4

(b) Linear Distortion (c) Curved Distortion

Patch Test Mesh Configurations

Figure 13
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Table 1

Patch Test Deflections and Stresses

Regular Mesh
Linear Distortion

Curved Distortion

Normalized
Deflection

1.00

0.99

0.98

1

1.00

0.95

0.97

Normalized

Bending Stress @
Element Centroid

I 2 j 3
1.00

0.98

0.99

1.00

1.01

0.98

I 4

1.00

0.99

0.99

Regu_ _ ,_r Mesh
Linear Distortion

Curved Distortion

(a) SHELM5

Normalized
Deflection

Normalized

Bending Stress @
Element Centroid

i I _ 3 I 4
1.00 1.00 1.00 1.00 1.00

I. 00 I. 00 I. 00 i. 00 I. 00

0.99 1.01 0.99 0.97 0.98

(b) SHELM9

NOTE : Deflections reported are at midpoint of the

free edge. For SHELM5, centroidal stresses
are for the four extreme corner elements.
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With consideration for the above

behavior when severely distorted is examined by

the pressure-loaded skew plate of Figure 14.

the (2x2) mesh configuration (N=5) for SHELM9.

remarks, element

considering

Depicted is

Importance of the planar Jacobian transformation is

demonstrated in Table 2. Failing to consider (54) when

interpolating strain, results in an artificially stiff

response. When the transformation is included, convergence

is much improved.

7.3 Truncated Hemispherical Shell

Mesh geometry and other pertinent information are

given in Figure 15. Due to symmetry, only one-fourth of the

shell is discretized. This is one of

recommended benchmark problems designed

behavioral characteristics of new shell

Loading is such that large sections of the

almost as rigid bodies, making this a

challenging problem. Because this nearly rigid body motion

involves little membrane action, the potential for locking

is great.

Convergence curves for normalized displacements at

point of load application are plotted in Figure 16. Despite

being of lower order, SHELM5 converges faster than any of

the 9-node elements considered, including SHELM9. The

standard displacement-based element with exact integration

is a big disappointment. This was almost to be anticipated

a series of

to determine

elements [42].

shell rotate

particularly
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Pressure load = 0.001

Length = I00

Thickness = 0,I0

E = 445,530

v = 0.30

= =30 =

All edges simply supported

Thin Rhombic Plate

Figure 14
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Table 2

Thin Rhombic Plate Deflections and Moments

Normalized Maximum Deflection

without eqtn. (54) with eqtn. (54)

N SHELM5 I SHELM9 SHELM5 I SHELM9

5

9

13

17

33

0.691

0.721

0.498

0.759
0.815

0.844

0.897

0.939

0.899

1.046

0.920

0.908

0.915

0.946

r

5

9
13

17
33

Normalized Maximum Moment

without eqtn. (54) with eqtn. (54)

N SHELM5 I SHELM9 SHELM5 SHELM9

0.565 0.848

0.647 0.906

0.548

0.842

0.873
0.897

0.935

1.088
0.938

0.937

0.947

0.967

NOTE : N is the number of nodes along plate edge
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F = t.0 (on quadrant)
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Figure i.5
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though, considering the severity o_ th_ problem. As an

aside, non-detrimental effects o_ the stab_!ization matrix

are noted, as Q9-Y add Q9-URI yield !dent_c_i results.

7.4 Cant_!ever Beam with _nd Moment

A moment-loaded cantilever beam was selected to

begin the nonlinear study. Because o_ its s_mplicity

(essentially 2D with no shear/me_ran_ _ocking concerns) and

the availability of an analytical solution, this problem is

particularly well-suited for initial verification of

geometric nonlinear portions of the _ode.

Structure geometry and normai!zed displacements as a

function of loading are il!ustrated in Figure 17. For

clarity, SHELM9 has been omitted, as its response is almost

identical to that of SHE_S and Q9-UR_, Even though large

nonlinear deformations were involved, none of the elements

considered experienced convergence difficulties. This _S

not surprising, in light of the relatively unconstrained

nature of the problem.

Also of note iS that the mixed elements required

essentially the same nu_er of _ter_t!ons over the full

loading history as Q9-URI (see Appendix B). AS d_scussed in

Section 2.3, a lesser number wa_ @_peGted. Again, this

might also be attributed to the problem simplicity.

=

2--

78



1.0

L

h

L =12

J

h =1.0

v =0.0

Mo"2EEI/L
E =3xlO 7

I
I

I
I

I
I

I
I

iI_

I
I

I

U

L

W

L

__ Analytical
/_ SHELM5 (6elements)
0 09-URI (2 elements)

0 i i I I

0.1 0.2 0.3 0.4 0.5
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Cantilever Beam with End Moment

Figure 17
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7.5 Cantilever Beam with End Shear

This is a somewhat more challenging problem than the

one just considered. Here, the beam is thin (L/h = I00) and

subject to transverse shear, so that locking is now a point

of concern.

Figure 18 illustrates the structure geometry

with a plot of displacements as a function of load. Again,

SHELM9 has been omitted for clarity. Although deformations

again were rather large (U/L = 0.32, W/L = 0.67), no

problems were encountered. Because the mixed elements now

converge in fewer total iterations, the CPU time ratio has

been reduced (compare Sections 7.4 and 7.5 in Appendix B).

7.6

along

Shallow Shell Subject to Concentrated Load

The level of complexity is raised another notch, as

membrane forces are now responsible for carrying a portion
=

of the load. If the shell is shallow however, there is only

a mild coupling of bending and membrane actions.

Consequently, accurate representation of

typically is well within the capabilities

elements.

shallow shells

of most shell

Information pertinent to this problem is given in

19. Because of symmetry, only one-quarter of the

is considered in the finite element discretization.

Figure

shell

Once more, for clarity the SHELM9 plot is omitted, with only

the snap-through load level reported. Again, each of the

elements considered were trouble-free.

J

E
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Though difficult to determine quantitatively just

how many added membrane constraints are introduced, because

of the shell's shallowness, additional constraints should be

of secondary importance. In this particular case, boundary

restraints (immovable supports along the straight edges) are

such that a substantial portion of the strain energy will be

membranal. As a result, inextensional bending modes are not

crucial and membrane locking should no£ be a major concern

here.

7.7 Pinched Cylindrical Shell

Element behavior for deep shell geometric nonlinear

analysis is now investigated. Structure geometry, loading,

boundary conditions and material properties are given in

Figure 20. Again, symmetry conditions are such that only

one-eighth of the shell need be considered. This is one of

the more severe tests available, since complex bending-

membrane coupling action (region C) and inextensional modes

(regions A, B and D) are both present.

Load-deflection curves are plotted in Figure 21.

Though each of the elements remain numerically stable, we

now begin to see small deviations in reported results. In

the absence of an analytical solution, no further comments

in regard to element accuracy are made. Here again, given

the same mesh and load step sizes, SHELM9 is converging in

fewer iterations than Q9-URI, resulting in further reduction

of the CPU time ratio (see Appendix B).
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7.8 Cylindrical Bending of Square Plate Subject to Gravity
Load

Due to their highly nonlinear (geometric) response,

the cylindrical bending problems of this and the subsequent

two sections are particularly severe tests for any shell

element. Loading is such that maximum deflections are on

the order of 500 times the plate thickness, with rotations

on the order of one radian. Since the plate is permitted to

"flow" into the cavity when loaded (see Figure 22), in-plane

stretching is small and deformations remain elastic.

Conditions such as these typically are encountered in the

"binder wrap" phase of sheet metal fo_ming operations [20].

Structure geometry and normalized displacements as a

function of loading are shown in Figure 22. Indicated mesh

sizes are for the one-quarter plate (due to symmetry). The

lower order SHELM5 element experienced no difficulties.

SHELM9 however, despite having double the number of degrees-

of-freedom, is observed to bestiff. Increasing the order

of integration from (3x3x2) to (4x4x2) was of no help.

Element Q9-URI fared even worse. The displacement-based

element failed to converge for even the first load step.

Convergence was still a problem when loads were further

subdivided into 200 equal steps! Interestingly enough,

these same element meshes which were inadequate for the

nonlinear problem, yielded exact solutions when used in the

corresponding linear analysis.

D
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Constraint concepts again provide a means for

helping to explain the unusual behavior of elements SHELM9

and Qg-URI described above. Given the plate's thinness

(2L/h - 1600) and loading, shear constraints most certainly

must be considered. The rolle_ supports limit in-plane

stretching so that, once deformation has proceeded far

enough for shell action to takQ over, membrane constraints

also become active (note that SHE_9 is still fairly

accurate for the first two data points). Finally, since

bending occurs in one direction only, additional constraints

associated with the off-bending direction are also

introduced (thre_ for SH_LMB and six for SHELMg; see

equations 49, 51 and 53). The net effect of constraints

entering in on three different levels apparently is too much

for elements SHELM9 and Qg-uRI to handle. What on the

surface appeared to be a fairly straightforward nonlinear

plate bending problem, has in fact turned out to be a

monsteri _

?.9 cy_indrlcai Bending of Square _iate Subject £o a Line
Force

Pertinent information for this test case is given in

Figure 2_. Except for loading, it is identical to the

p_evious problem. Xt has been included primarily to

facilitate making comparisons with its "beam equivalent" in

Section 7.5.

|
l
E
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As in the previous example, SHELM5 experiences no

difficulties, while SHELM9 is noticeably stiff and Q9-URI

again failed to converge. Of additional interest is that

the "beam equivalents" of SHELM9 and Q9-URI in Section 7.5

suffered no similar degradation. There, with the third

direction small in comparison to the beam length, off-

bending direction constraints are not significant. Also, as

before, the corresponding linear analyses yielded the exact

solutions.

7.10 cylindrical Bending of Square Plate Subject to Speci-
fied Line Displacement_

This example is the conjugate of Problem 7.9, i.e.

line displacements rather than line forces are specified

along the plate longitudinal axis.

show the element's capability

displacement input. _

It has been included to

for analyzing enforced

Line forces were calculated from centroidal

transverse shear stresses of the eiement nearest to the

plate center. They are plotted as a function of specified

displacement in Figure 24. As in the previous two examples,

SHELM5 was trouble-free, while SHELM9 and Q9-URI experienced

problems.
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7.11 Simply Supported Square Plate Subject to Gravity Load

This final example is completely analogous to

Problem 7.8, except that now all four plate edges are simply

supported. Difficulties encountered in the earlier problem

were attributed to boundary conditions which activated an

unusually high number of in-plane and bending constraints.

It is speculated that, by simply supporting all four edges,

the structure will now exhibit true biaxial plate bending

behavior, thereby relaxing many of these constraints.

Analysis results are presLen£ed in Figure 25. Once

again, SHELM9's plot has been omitted, as its response is

almost identical to that of Q9-URI for the less constrained

problem. As postulated, the additional restraint has indeed

enabled both SHELM9 and Q9-URI to now obtain accurate,

convergent solutions (the latter_ only after considerable

"searching" to find an appropriate convergent step size).
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CHAPTER 8

SUMMARY

element's

iterative

that end,

forth in

lamina and fiber coordinate systems.

Element development was

8.1 A Brief Review

Numerous methods are presently available to analyze

thin plate and shell structures. Assessing the merits and

drawbacks of some of the more popular current approaches, a

degenerated mixed shell element was chosen for the present

study. In particular, itwas proposed that the analysis

capabilities of the linear 5 and 9-node elements of [61] and

[19] be extended to include geometric nonlinearities.

Methodology necessary to effectively track

location and subsequent deformation during

step-by-step solution process was described.

extensive reference was made to the concepts

[34] concerning construction

an

the

To

set

of element-level

then traced from the

incremental variational principle on through to the final

set of equilibrium equations. A procedure for recovering

the linear element was also outlined,

Strain parameters were then selected according to a

set of guidelines compiled in [19,54,61]. This, in turn,

stimulated a discussion regarding constraint index concepts
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and their predictive capability related to locking in

shells. Special procedures for limiting the element's

sensitivity to distortion were also described.

Details of modifications necessary to incorporate

the elements into a general-purpose nonlinear finite element

program were discussed. Included were descriptions of: (i)

a two-surface input option, and (ii) a procedure for

internally condensing out center node degrees-of-freedom.

Helpful hints and guidelines for the new user were also

provided.

Finally, performance characteristics of the elements

were evaluated in a wide variety of linear and nonlinear

plate/shell problems. Despite being of lower order, the 5-

node element proved superior,

constrained applications.

8.2 Significant Findings

Despite limiting

particularly in severely

O

the research to linear and

geometric nonlinear static analysis, a substantial amount of

additional insight has been provided concerning the finite

element modelling of thin plate/shell structures. Some of

this information has also been reported in a parallel but

independent research effort at the University of Maryland

[58]. The more dramatic discoveries, however, are exclusive

to the present work. The reference here is to those

insights not confined to mixed formulations, but rather are
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relevant to finite element methods in general (see items 7

and 8 to follow).

Significant findings related to this research are

listed below. A more detailed discussion of each item then

follows.

Concurrently wi_h the University of Maryland

I) More streamlined than previous mixed formula-

tions

2) Necessity of including the strain-displacement

mismatch terms in mixed formulations (see also

[51])

Exclusive to this Research

3) A numerical S£udy illustrating the need for

inclusion of a covariant coordinate transforma-

tion for severely skewed elements

4) Necessity of recording strain histories in

mixed formulations, even for geometric

nonlinear analysis

5) Numerical

given the

mixed elements

iterations than

equivalents

results to support the claim that,

same mesh and load step history,

converge in fewer total

their displacement-based
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6) More evidence provided tQsupport the theory

that, in mixed formulations, the lower order

elements may be more attractive

7) Numerical results refuting the belief that the

same mesh used to obtain accurate linear

solutions will necessarily converge to the

correct nonlinear solution

8) Discovery of a new form of locking intrinsic to

shell elements subjected to uniaxial bending

More subtle contributions include: (i) illustration of yet

another constrained media application (see (8) above) where

mixed methods prove superior to standard displacement-based

formulations, (ii) extending analysis capabilities of SHELM5

and SHELM9 to include geometric nonlinearities, (iii)

establishing a procedure for attaching mixed elements to an

existing displacement-based finite element program, and (iv)

code development for incorporation of two-surface and

central node condensation options r

By relaxing the pointwise nonlinear equilibrium

requirements and assuming that displacement functions can

always be constructed which are compatible across

interelement boundaries, the current formulation is much

more streamlined than earlier hybrid/mixed methods [16].

The latter condition is easily satisfied for the degenerated

shell elements under consideration. As demonstrated in

(18), equilibrium is in fact satisfied in an averaged
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integral sense, so that the above simplifications are indeed

justified.

Since

displacements

mismatch terms must be retained.

strains are interpolated "independently" from

in a mixed formulation, strain-displacement

These correction terms do

the dfsplacement-based element

strains computed as derivatives of

that, this relation is

not appear in standard

models. There, are

displacements so by definition,

skew plate problem (Section

automatically satisfied.

Morley's 7.2) demon-

strated the need for a covariant coordinate transformation

for severely distorted elements. E_rlier studies did not

consider this effect [58,61].

In displacement-based element formulations, strain

is obtained simply by differentiating the total

displacement. Mixed formulations, however, interpolate

strains incrementally. To determine the total strain, it is

therefore necessary to sum and store its history at each

integration point throughout the entire solution process.

The iterative solution process involves calculation

of out-of-balance right-hand-side load terms, which are

directly related to the element's current stress state.

Since deformations may be large, elements may also become

quite irregular in shape. By evaluating stress more

accurately and being less sensitive to distortion, the mixed

elements thus typically require fewer total _terations to
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converge than equivalent displacement-based elements.

Implications of the above are obvious. The entire process

of computing, assembling and solvingthe global system

equations is repeated fewer times, resulting in a reduction

in computation effort. Thus, the mixed element, despite

being more costly insofar as formation of the element

stiffness is concerned, is able to recover a portion of this

expense in a full-blown, iterative nonlinear analysis.

For the uniaxial bending problem of Sections 7.8-

7.10, SHELM5 consistently outperformed SHELM9, despite being

of lower order. Apparently the additional degrees-of-freedom

gained in moving from a 5 to a 9-node element are offset by

an even greater number of added constraints. In this case,

the lower order element is preferred.

Sections 7.8-7.10 also served to illustrate that the

same mesh which yields an accurate linear response cannot be

assured of converging to the correct nonlinear solution.

It was theorized in Section 7.8 that this may be a result of

shell actions kicking in as deformation proceeds, thereby

introducing membrane constraints not present in the linear

plate problem. The point to be made is that many research

efforts concentrate on the linear formulation, contending

that the nonlinear problem is nothing more than a routine

extension of the linear development. In light of the data

presented, this line of thinking appears questionable (see

also [7] for similar observations).
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Difficulties associated with shear and membrane

locking when modelling thin plate/shell structures are well

documented. Other constrained media applications

(incompressible materials, contact problems etc.) have also

received considerable attention. Another form of locking

was encountered in this research (again refer to Sections

7.8-7.10). The shell element, designed for biaxial bending,

may not be able to satisfy the additional constraints

associated with vanishing of bending strains in the second

direction for uniaxial bending.

8.3 Suggestions for Future Work _ ....

Having explored only the geometric nonlinear,

strain,

SHELM9,

second

small

static analysis capabilities of elements SHELM5 and

many other areas yet remain to be investigated. A

level of research, aimed at improving upon the

uurrent development, is also a possibility. Compiled below

are some suggestions for future work which address each of

these _'-_as. A brief discussion of each item then follow_.

I) Improve computational efficiency of present

elements using a symbolic manipulator such as

MACSYMA [43]

2) Explanation

behavior of

(more quantitative) for the poor

SHELM9 in the test problems of

Sections 7.8-7.10

I00



3) Investigation of other constrained media

problems

4) Extending _lement capabilities beyond static,

small strain, geometric nonlinear analysis

As indicated in Section I.i, computational cost

considerations have long been a drawback for mixed element

formulations. Preliminary results indicate that, for

nonlinear applications, closed-form expressions for element

stiffness matrices are far too complex. Targeting

individual contributions to the stiffness, such as the

elastic-plastic material matrix [18], may be more practical_

This particular application is of course valid for standard

displacement-based formulations as well.

Explaining SHELM9's breakdown in the thin plate

uniaxial bending problem may entail a more in-depth study of

constraint index concepts. Because of the difficulties

associated with interpretation of the constraint index for

curved shells, this author has only theorized as to the

cause for SHELM9's poor behavior. Since the simply

supported version of Problem 7.8 (Problem 7.11) and the

"beam equivalent" of Problem 7.9 (Problem 7.5) experience no

similar degradation, the constraint index-related

explanations provided do, however, appear to have

considerable merit.

Whether or not mixed methods find general acceptance

in the finite element community in the near future is
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debatable.

themselves

should be

illustrated

Nevertheless, mixed methods have established

in constrained media applications and therefore

investigated further in this regard. As

in this research, being more costly

computationally is not so great of a concern if conventional

methods are unable to obtain a solution.

Broadening analysis capabilities of SHE_5 and

SHELM9 is also desirable since practical applications are,

at present, rather limited. Areas of perhaps greater

interest include: (i) large strain analysis, (ii) material

nonlinear analysis, (iii) dynamic considerations, (iv)

laminated composite analysis, (v) polymer/rubber material

modelling, and (vi) high temperature applications.
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APPENDIX A

Nonlinear Problem Set Load Step Information

Section

7.4

Number of From To

Equal Steps Load Load

6 0.00 0.15

15 0.15 0.30

30 0.30 0.45

7.5 16 0.00 4.00

7.6 8 0.00 2.00
4 2.00 2.20

0.01 increments to snap-through

7.7 2 0.00 1.00

8 1.00 3.00

2 3.00 4.00

7.8 20 0.00 3.7E-04

7.9 20 0.00 0.474

7.10 20 0 500

7.11 10 * 0.00 1.85E-04

* NOTE : Q9-URI was unstable at this load level
increment. A solution was finally

obtained when load was further subdivided

into 30 equal steps.
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APPENDIX B

Nonlinear Problem Set Solution Time Information

Total No.

Section Element (mesh) I_F Iterations CPU time

7.4 Q9-URI (2) 60 250 205 sec

SHELM5 I_ I 60 413 sacSHELM5 90 252 569 sec

SHELM9 (2) 60 252 618 sec

7,5 Q9-URI (3) 90 47 63 sec

SHELM5 (6) 90 38 i01 sec
SHELM9 (3) 90 38 165 sec

7.7 Q9-URI (4x4) 328 38 297 sac

SHELM9 (4X4) 328 26 643 sec

7.8 Q9-URI (5x5) 550 ......

SHEik45 (5X5) 275 45 8.65 mill
SHELM9 (5X5) 550 33 24.6 min

7.9 Q9-URI (5x5) 550 ......

SHELM5 (7x7) 525 43 20.8 min

SHELM9 (5x5) 550 34 25.1 m_n

7,10 Q9-URI (5x5) 550
SHELM5 (7x7) 525

SHELM9 (5x5) 550

_

0 5.6 min

0 9.3 min

Ratio

1.00

2.01

2.78

3,0_

i.00

1,60
2.62

1.00

2.16

_=
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